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Synopsis
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate
into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem
cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated
from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with
the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well
ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster
of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA
(human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been
isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord
and Wharton’s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without
any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-
receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and
secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In
the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell
surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing
capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical
trials.

Key words: chronic diseases, homing, immunomodulatory features, in vitro differentiation, mesenchymal stem cells.

Cite this article as: Bioscience Reports (2015) 35, e00191, doi:10.1042/BSR20150025

INTRODUCTION

Stem cells are the cells with a specific function with the abil-
ity of self-renewal, possess varied potency and differentiate into
multilineages [1]. Because of clinical applications and biological
importance, stem cells become a prominent subject in modern
research era. On the basis of origin, stem cells are divided into
different categories.
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Embryonic stem cells (ESCs) are pluripotent stem cells, isol-
ated originally from the inner cell mass (ICM) of mouse early
pre-implantation blastocyst, having the capacity to generate into
any mature cell of the three germ lines [2]. Later on, Thomson
et al. [3] also isolated ESCs from ICM of human blastocyst, but
until now as compared with humans, only mouse ESCs have
been investigated in depth. ESCs possess distinctive self-renewal
capacity, pluripotency and genomic stability [4] and can give
rise to almost all lineages and are promising cells for cellular
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therapy [1]. From the very first derivation of human ESCs, sci-
entists are keenly interested in the use of ESCs for drug discovery,
immunotherapy and regenerative medicine, but their use has been
restricted due to ethical issues and also because of difficulty in
obtaining quality human oocytes.

Induced pluripotent stem cells (iPSCs) are generated from
adult cells by the overexpression of four transcription factors
Oct4/3 (octamer-binding transcription factor 4/3), Sox2 (sex de-
termining region Y), Klf4 (kruppel-like factor 4) and c-Myc
(Avian Myelocytomatosis virus oncogene cellular homologue)
[5]. The iPSCs at cellular level are almost similar to ESCs as they
are having the capacity of self-renewal, differentiation potential
and the ability to produce germ line competent-chimeras. After
these findings, two groups Takahashi et al. [6] and Nakagawa et
al. [7] have generated the iPSCs from adult human fibroblasts.
Though iPSCs possess great potential for cell therapy, but their
genomic stability is still questionable.

Around the world, scientists are researching for stable, safe
and highly accessible stem cells source with great potential for
regenerative medicine. The cells isolated from mouse bone mar-
row upon culture exhibited the plastic adherence properties and
formed spindle-shaped colonies were referred as colony forming
unit fibroblasts [8]. Due to their ability to differentiate into spe-
cialized cells developing from mesoderm, they were named as
mesenchymal stem cells (MSCs). MSCs, also known as mul-
tipotent cells, exist in adult tissues of different sources, ran-
ging from murine to humans. They are self-renewable, multi-
potent, easily accessible and culturally expandable in vitro with
exceptional genomic stability and few ethical issues, marking
its importance in cell therapy, regenerative medicine and tissue
repairment [9].

The current review highlights recent findings in the areas of
hMSCs (human MSCs) sources, its ex vivo differentiation ability,
immunogenicity, homing ability, banking and cryopreservation,
its role in the treatment of chronic diseases and its use in human
clinical trials.

HUMAN MESENCYMAL STEM CELLS

Since the first description of hMSCs derived from bone marrow
[10], they have been isolated from almost all tissues including
perivascular area [11]. Still there is neither a single definition
nor a quantitative assay to help in the identification of MSCs
in mixed population of cells [9]. However, the International So-
ciety for Cellular Therapy has proposed minimum criteria to
define MSCs. These cells (a) should exhibits plastic adherence
(b) possess specific set of cell surface markers, i.e. cluster of dif-
ferentiation (CD)73, D90, CD105 and lack expression of CD14,
CD34, CD45 and human leucocyte antigen-DR (HLA-DR) and
(c) have the ability to differentiate in vitro into adipocyte, chon-
drocyte and osteoblast [12]. These characteristics are valid for
all MSCs, although few differences exist in MSCs isolated from
various tissue origins.

Sources
MSCs are present not only in fetal tissues but also in many adult
tissues with few exceptions. Efficient population of MSCs has
been reported from bone marrow [10]. Cells which exhibits char-
acteristics of MSCs were isolated from adipose tissue [13,14],
amniotic fluid [15,16], amniotic membrane [17], dental tissues
[18,19], endometrium [20], limb bud [21], menstrual blood [22],
peripheral blood [23], placenta and fetal membrane [24], salivary
gland [25], skin and foreskin [26,27], sub-amniotic umbilical
cord lining membrane [28], synovial fluid [29] and Wharton’s
jelly [30,31] (Table 1).

Isolation and initial culturing
There are different protocols reported previously in terms of isol-
ation, characterization and expansion of MSCs, but all MSCs
(despite of protocol) exhibits the minimum criteria proposed by
International Society for Cellular Therapy.

hMSCs were isolated based on their ability to adhere to plastic
surface, but this method resulted in the formation of heterogen-
eous cells (stem cells along with their progenitor cells) [32]. Bone
marrow-derived MSCs (BM-MSCs) are considered the best cell
source and taken as a standard for the comparison of MSCs from
other sources.

Establishment of a comprehensive procedure for the isolation,
characterization and expansion of MSCs is the key to success for
the use of these cells as a good source for regenerative medi-
cine [33]. Unlike bone marrow, MSCs from other tissues can
be easily obtained by non-invasive methods and its proliferation
can be maintained up to many passages [34,35]. MSCs from
bone marrow, peripheral blood and synovial fluid were isolated
by using Ficoll density gradient method with small modifica-
tions [24,30,36] and seeded into culture plates. While isolating
MSCs from bone marrow, some haematopoietic cells also ad-
here to the plastic plate but during sub-culturing these cells are
washed away, leaving only adherent fibroblast like cells [37].
MSCs from various tissue sources (adipose, dental, endomet-
rium, foreskin, placenta, Wharton’s Jelly) were isolated after
digestion with collagenase and then cultured at varying densities
[20,25,33]. Recently an efficient method to isolate BM-MSCs
using novel marrow filter device is explored [38], which is less
time consuming and avoids the risk of external contamination.
MSCs isolated from different sources were cultured using condi-
tion media such as Dulbecco’s modified Eagle’s media (DMEM)
[25,33], DMEM-F12 [17,20,26], αMEM [19,23,29], DMEM-LG
[21,24], DMED-HG [27,28] and RPMI (Roswell Park Memorial
Institute medium) [39]. The primary culture media was supple-
mented with 10 % FBS [25,33], new-born calf serum (NBCS)
[23] or fetal calf serum (FCS) [25] (Table 1). Besides the cul-
ture media and supplementation, the oxygen concentration also
affects the expansion and proliferation of MSCs [40]. MSCs ex-
pansion is also documented when cultured in DMEM with low
glucose supplemented with growth factors like fibroblast growth
factor (FGF), epidermal growth factor (EGF) and B27 [27]. But
most commonly DMEM with 10 % FBS is vastly employed in
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Table 1 Summary of hMSCs sources, cell surface markers and expansion media with serum supplements

Source Method of isolation Media
Serum
supplement Cell surface markers References

Bone marrow Ficoll density gradient method
Novel marrow filter device

DMEMDMEM-F12ADMEM FBS Positive Negative [10,36,38,47,48]

CD73, CD90, CD105,
STRO-1

CD14, CD34, CD45,
HLA-DR

Adipose tissue Digestion method
Membrane filtration method

DMEMDMEM-LG FBS
FCS

CD73, CD090, CD29,
CD44, CD71, CD105,
CD13, CD166, STRO-1

CD14, CD31, CD34, CD45 [13,34,43,49,57]

Amniotic fluid and membrane Density gradient method
Digestion method

α-MEMDMEM/F12 FBS CD29, CD44, CD90,
CD105, CD, SH2, SH3,
HLA-DR

CD10, CD14,CD34,
HLA-DR

[15–17]

Dental tissues Digestion method α-MEMMEM FCS
FBS

CD29, CD44, CD90,
CD105

CD14, CD34, CD45 [18,19,46]

Endometrium Digestion method DMEM-F12 FCS CD73, CD90, CD105,
CD146

CD34, CD45 [20]

Limb bud Digestion method DMEM-LG FBS CD13, CD29,CD90,
CD105, CD106

CD3, CD4, CD14, CD15,
CD34, CD45, HLA-DR

[21]

Peripheral blood Ficoll density gradient α-MEM NBCS CD44, CD90, CD105,
HLA-ABC

CD45, CD133 [23]

Placenta and fetal membrane Digestion method DMEM-LG FBS CD29, CD73, CD90,
CD105

CD34, CD45 [24]

Salivary gland Digestion method (Ringer
solution)

DMEM FCS CD13, CD29, CD44, CD90,
STRO-1

CD34, CD45 [25]

Skin and foreskin Digestion method DMEM-HGDMEMDMEM-F12 FBS CD44, CD73, CD90,
CD105, CD166,
SSEA-4, Vimentin

CD34, CD45, HLA-DR [26,27]

Sub amniotic umbilical cord
lining membrane

Digestion method DMEM-HGDMEMCMRL1660 FBS CD29, CD44, CD73, CD90,
CD105

CD34, CD45 [13,28,58]

Synovial fluid Ficoll density gradient method α-MEM FBS CD44, CD90, CD105,
CD147, STRO-1

CD31, CD34, CD45,
CD106

[29]

Wharton’s jelly Enzymatic digestion method DMEM FBS CD73, CD90, CD105 CD14, CD34, CD45, CD79,
HLA-DR

[31,32]

..........................................................................................................................................................................................................................................................................................................................................................................
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culturing and expanding MSCs in vitro; however, the use of exo-
genous FBS is highly debated.

Expression of cell surface markers
According to the International Society for Cellular Therapy
standard criteria, expression of specific set of cell surface mark-
ers is one of the essential characteristics of hMSCs. Those cells
which are positive for CD73, D90, CD105 whereas negative ex-
pression of CD14, CD34, CD45 and HLA-DR are considered as
MSCs. However, the most characterized and promising markers
with highest specificities for MSCs are describe in the present
study (Table 1). MSCs have been reported from various hu-
man tissues, which exhibit the expression of above mentioned
cell surface markers along with positive expression of CD29,
CD44, CD146, CD140b specific to tissue origin. The expression
of CD34, which is a negative marker, is still controversial [41].
A number of studies have also reported that stage-specific em-
bryonic antigen (SSEA)-4 [13,42], CD146 [43,44] and stromal
precursor antigen-1 (Stro-1) [45] are the stemnes markers for
MSCs. The human amniotic fluid-derived MSCs exhibits the
expression of CD29, CD44, CD90, CD105, HLA-ABC [major
histocompatibility complex class I (MHC I)] along with SH2 (Src
homology 2), SH3 (Src homology 3), SH4 (Src homology 4) but
lack the expression of HLA-DR (MHC II) [16]. Stro-1, which
is consider as stemnes marker for MSCs, is reported positive in
dental [46] and bone marrow [47,48] whereas negative in human
adipose-derived MSCs (AD-MSCs) [49].

Long-term in vitro culturing capacity
Although MSCs have great advantages over other stem cells, their
clinical applications are hindered by many research barriers. One
of the major challenges is to obtain adequate number of cells as
these cells were found to lose their potency during sub-culturing
and at higher passages. One of the reasons behind the senescence
and aging of MSCs during in vitro expansion is the decrease in
telomerase activity [50]. It has been reported that human BM-
MSCs become senescent during long-term culture, manifested
by decline in differentiation potential, shortening of the telomere
length and morphological alterations [51]. Similar results are also
reported when MSCs derived from bone marrow and adipose tis-
sues were progressively cultured at higher passages. The actual
age of the cells in culture is usually determined by population
doublings (PDs) time and MSCs colonies derived from a single
cell has shown up to 50 PDs in 10 weeks [52], whereas others
have reported 30 PDs in approximately 18 weeks [51]. How-
ever, culturing MSCs for a long time resulted in an increase in
the probability of malignant transformation [53] and also showed
decline in their multipotency. Early MSCs have proved higher dif-
ferentiation ability to chondrocytes, adipocytes and osteocytes;
however, at higher passages and on long-term culture, this dif-
ferentiation property declines [54]. There are two vital com-
pounds which influence MSCs’ properties during in vitro cultur-
ing, serum and growth factors, which are associated with malig-
nant transformation of MSCs at higher passages [54]. In minimal

media condition, MSCs culturing requires 10 % heat-inactivated
FCS, but in such culture conditions the MSCs retain some FCS
proteins, which may evoke immunologic response in vivo [55].
Expanding MSCs in serum-free culture media showed a gradual
decrease in differentiation potential and telomerase activity, but
cells were resistant to spontaneous transformation and could be
expanded at higher passages without any chromosomal altera-
tion [54]. However, due to variation in culture media and growth
factors used, the comparison of data is difficult.

In vitro differentiation potential
hMSCs have the capacity to differentiate into all the three lin-
eages, i.e. ectoderm, mesoderm and endoderm, with various
potency by employing suitable media and growth supplements
which initiate lineage differentiation (Table 2).

Mesodermal lineages
In addition to multipotency and expressions of cell surface mark-
ers, one of the determining properties of MSCs is to differentiate
into mesodermal lineages. The in vitro differentiation into adipo-
cytes, osteocytes and chondrocytes, confirmed by production of
oil droplet, formation of mineralized matrices and expression of
type II collagen respectively, has been evaluated by immunocyt-
ochemical, histochemical and PCR analysis [10,56–58]. Differ-
entiation of MSCs into adipocytes is induced by proper media
supplementations, which activate transcription factors (genes)
responsible for adipogenesis. For adipogenesis, MSCs were cul-
tured in growth medium supplemented with dexamethasone, in-
domethacine, insulin and isobutyl methyl xanthine for 3 weeks
and the cells were analysed by accumulation of lipid droplets and
expression of adipocytes-specific genes peroxisome proliferator-
activated receptor γ (PPARγ ), adipocyte protein 2 (ap2) and
lipoprotein lipase (LPL) genes [10,59]. Induction of adipogen-
esis is characterized by two phases: determination phase and
terminal differentiation phase [60]. During determination phase,
the cells committed towards pre-adipocytes show similar mor-
phology to fibroblasts and cannot be distinguished from their
MSCs precursors; however, at terminal phase the pre-adipocytes
become mature adipocytes and formed lipid droplets and ex-
press adipocytes-specific proteins [59]. Overall, adipogenesis is
an ordered process, involving multiple signalling cascades which
are further discussed later in the present review.

The classical method to differentiate MSCs into osteocytes is
by culturing the cells with ascorbic acid, β-glyceralphosphate
and dexamethasone for 3 weeks in growth conditioned media.
The osteogenic induction of MSCs initiated mineral aggregation
and showed increase in alkaline phosphatase activity at final week
of differentiation [10]. These mineralized nodules were found
positive for Alizarin Red and von Kossa staining. The process
of osteogenesis starts with assurance of osteoprogenitor which
first differentiate into pre-osteocytes and then finally differentiate
into mature osteoblasts [61]. One of the most important indic-
ating factors for osteogenesis is the expression of runt-related
transcription factor 2 (Runx2) [61]; however, other transcription
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Table 2 In vitro differentiation potential of hMSCs

Source of hMSCs In vitro differentiation potential References

BM-MSCs Osteocytes, chondrocytes, adipocytes [13,40,43,47,60]

Hepatocytes [101]

Cardiomyocytes [84]

Pancreatic cells [106–108]

Neuronal cells [89,128]

AD-MSCs Osteocytes, chondrocytes, adipocytes [13,43]

Hepatocytes [172]

Cardiomyocytes [173]

Pancreatic [174]

Neuronal cells [90,91]

Dental tissues-derived MSCs Osteocytes, chondrocytes, adipocytes [18,46]

Pancreatic cells [109,112]

Melanocytes [19]

Neuronal cells [98,99]

UCB-MSCs Osteocytes, chondrocytes, adipocytes [13,28,43,56]

Hepatocytes [104,105]

Pancreatic cells [143]

Neuronal cells [97]

Limb bud-derived MSCs Osteocytes, adipocytes [21]

Hepatocytes [21]

Neuronal cells [21]

Wharton’s jelly-derived MSCs Osteocytes, chondrocytes, adipocytes [30,31]

Hepatocytes [175]

Neuronal cells [88]

Skin- and foreskin-derived MSCs Osteocytes, chondrocytes, adipocytes [26,27]

Myocytes [26]

factors like osteonectin, bone morphogenic protein 2 (BMP2) and
extracellular signal molecules along with Runx2 expression, are
involved in this process. In the whole process of bone formation,
first osteoblasts synthesize the bone matrix and then help in bone
remodelling and mineral deposition.

The differentiation of MSCs into mesenchymal lineage is
known to be controlled by diverse transcription factors and sig-
nalling cascades. Many investigators have reported that a correl-
ation exists between adipogenesis and osteogenesis [62,63]. It
was reported that a converse relationship exists between adipo-
genesis and osteogenesis during culturing with different media
supplements. [64]. Several signalling pathways such as Hedge-
hog [65,66], NEL-like protein 1 (NELL-1) [63] and β catenin-
dependent Wnt [67,68] are well manifested for pro-osteogenic
and anti-adipogenic stimulations in MSCs, although there are
various signalling cascades which demonstrate positive regu-
lation of both adipo- and osteogenesis. Among them, one of
the most familiar clinically-relevant molecule is BMP, which
promotes MSCs differentiation and its osteogenic commitment
[69,70] and also induce pro-adipogenic effects [71]. PPARγ and
Runx2 are the key transcription factors which control the adipo-
genic and osteogenic signalling cascades and the expression of
one transcription factor counteracts expression of other transcrip-
tion factor [14,72].

Like the adipogenesis and osteogenesis, hMSCs have the po-
tential to differentiate into mature chondrocytes. The first stand-
ard protocol for chondrocytes differentiation was established for
MSCs derived from human bone marrow [73]. According to
the standard protocol for chondrogenesis, cells were cultured in
DMEM media supplemented with insulin transferrin selenium,
linoleic acid, selenious acid, pyruvate, ascorbate 2-phosphate,
dexamethasone and transforming growth factor-β III (TGF-βIII).
The pre-induction stage of chondrogenic differentiation of MSCs
resulted in the formation of pre-chondrocytes and expresses type I
and type II collagens [74]. The expression of these genes and other
adhesion molecules depends on the presence of soluble factors,
i.e. TGF-β family (TGF-β1, TGF-β2 and TGF-β3) [75]. In the
final step, pre-chondrocytes differentiate into mature chondro-
cytes and express chondrogenic transcription factors like Sox9,
L-Sox5 and Sox6 [76,77]. In association with TGF-β1, other
growth factors such as, insulin like growth factor-I (IGF-I) and
BMP-2 were known to induce the differentiation of MSCs into
chondrocytes [78]. In hMSCs, TGF-β1 interacts with Wnt/β-
catenin pathways inhibits osteoblast differentiation and induce
chondrogenesis [79]. When human AD-MSCs were treated with
BMP-2, they differentiated into chondrocytes and expressed ma-
ture cartilage markers (type II collagen/GAG) [80]. Besides these
growth factors, other hormones such as parathyroid hormone-
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related peptide (PTHrp) [81,82] and triiodothyronine (T3) also
influenced chondrogenesis.

Like cardiomyocytes, MSCs can differentiate into other meso-
dermal lineages. Twenty years ago, the rat BM-MSCs were cul-
tured with 5-azacytidine which resulted in the differentiation of
these cells into multinucleated myotubes [83]. Later Xu et al. [84]
treated human BM-MSCs with the same chemical and demon-
strated that the cells differentiate into myocytes and were express-
ing myocyte-related genes, β-myocin heavy chain, α-cardiac
actin and desmin with additional calcium–potassium-induced
calcium fluxes. Human BM-MSCs also differentiate into skeletal
muscles and smooth muscles when transfected with notch intra-
cellular domain (NICD) [85] followed by treatment with TGF-β
[86]. Yet the exact in vivo signalling mechanism which initiates
the differentiation of hMSCs into myocytes is not completely
understood and under investigation.

Ectodermal lineages
Despite the mesodermal origin, hMSCs have displayed the ca-
pacity of trans-differentiation into ectodermal lineages. The
hMSCs isolated from different sources have demonstrated trans-
differentiation into neuronal cells upon exposure to neural in-
duction media supplemented with cocktails of growth factors.
Several growth factors like hepatocyte growth factor (HGF), FGF
and EGF were used in neuronal induction media cocktail and suc-
cessfully obtained neuronal specific phenotypes, i.e. oligodendro-
cytes, cholinergic and dopaminergic neurons [87–91]. Barzilay
et al. [89] reported that a transcription factor neurogenin-1 was
found effective in the trans-differentiation of MSCs into neur-
onal protein expressing cells. In another study, a LIM homoeo-
box transcription factor 1 α (LMX1a) expression into human
BM-MSCs resulted in differentiation to dopaminergic neurons
[89]. When BM-MSCs were cultured in serum-free media with
forskolin and cAMP, cells attained neuronal morphology and
elevated the expression of neuronal-specific markers [92]. β-
Mercaptoethanol (BME)- and nerve growth factor (NGF)-treated
MSCs also differentiated into cholinergic neuronal cells [87].
Many studies have shown that factors like insulin, retinoic acid,
bFGF, EGF, valproic acid, BME and hydrocortisone support
neuronal differentiation of AD-MSCs [93,94]. Glial cell line-
derived neurotrophic growth factors (GNDF), brain-derived neur-
otrophic factors (BDNF), retinoic acid, 5-azacytidine, isobutyl-
methylxanthine (IBMX) and indomethacin enhanced the MSCs
differentiation into mature neuronal cells [95]. Gangliosides are
glycosphingolipids which interact with EGF receptor (EGFR)
and enhance osteoblast formation. However, reduction in gangli-
osides biosynthesis leads to inhibition of neuronal differentiation
[96]. Human umbilical cord blood-derived MSCs (UCB-MSCs)
co-transfected with telomerase reverse transcriptase (TERT) and
BDNF revealed a longer life span and maintained neuronal differ-
entiation which was effective in recovery of hypoxic ischaemic
brain damage (HIBD) [97]. The dental derived MSCs, which
originate from neural crest, successfully differentiated into ma-
ture neuronal cells [98,99]. hMSCs originate from mesoderm but
have the potential to transdifferentiate into neural cells which

can revolutionize the regenerative cell therapy in treating many
neurological disorders.

Endodermal lineages
It was believed that hepatocytes could only be derived from the
cells originating from endoderm and their progenitor cells. How-
ever, MSCs have revealed the capacity of trans-differentiation
into hepatocytes and pancreocytes upon induction with their cor-
responding conditioned media. Human BM-MSCs were trans-
differentiated into hepatocyte by using two steps protocol: dif-
ferentiation step followed by maturation step. In differentiation
step, cells were cultured in Iscove’s modified Dulbecco’s medium
(IMDM) supplemented with EGF, bFGF and nicotinamide for a
week. Finally during maturation step, differentiated human BM-
MSCs were cultured with IMDM supplemented oncostatin M,
dexamethasone and ITS+ (insulin, transferrin, selenium) premix
which resulted in mature hepatocytes [100,101]. The hepatocyte-
differentiated cells expressed liver-specific transcription markers,
i.e. albumin, α-fetoprotein, nuclear factor 4 α (HNF-4α); how-
ever, the differentiation capacity remains inadequate for clinical
application. Among these transcription factors, HNF-4α is an
essential transcription factor for the morphological and func-
tional differentiation towards hepatocytes [102,103]. When hu-
man UCB-MSCs were transduced with HNF-4α, it enhanced the
differentiation capacity of the cells and increased expression of
liver-specific markers [104]. In other studies, it was shown that
valproic acid, which is histone deacetylase inhibitor, up-regulate
the expression of hepatic marker through activation of protein
kinase B (AKT) and extracellular signal-regulated kinases (ERK)
[105].

Human BM-MSCs have been successfully differentiated
into insulin producing β-cells in vitro and transplanted to
streptozotocin-induced diabetic mice which corrected the hyper-
glycaemic condition [106,107]. The paracrine factors increase
the differentiation and maturation of human BM-MSCs into pan-
creatic lineage without any genetic manipulation [108]. Human
dental pulp stem cells also differentiated into insulin producing
cells by induction with growth factors, i.e. acitvin A, sodium bu-
tyrate, taurine and nicotinamide [109]. Till now hMSCs derived
from adipose, dental, umbilical cord, amnion, Wharton jelly and
placental tissues have successfully differentiated into insulin pro-
ducing β-cells [110–112]. These studies have revealed that hM-
SCs can differentiate into endodermal lineages which can trans-
form the current traditional drug therapies to a future promising
cell based therapies.

Immunomodulatory features
Regarding clinical research on cellular therapy, it is very import-
ant to know about the immunomodulatory capabilities of MSCs.
In the current era of cell therapy and transplantation, the infusion
of MSCs and host compatibility is the main subject of interest.
Due to low expression of MHC I and lack expression of MHC
class II along with co-stimulatory molecules, like CD80, CD40
and CD86, MSCs are unable to bring substantial alloreactivity
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Table 3 hMSCs and chronic diseases

Disease Clinical condition Cell type Species Observations/Results obtained References

Neurodegenerative diseases ALS AD-MSCs Rat Enhance pathological phenotype and
enhance neuromuscular connections

[125]

PD BM-MSCs Rat MSCs found in hippocampus, cerebral
and cortex of brain, increase level of
tyrosine hydroxylase and DA

[88,129]

AD AD-MSCs Mice Increase Aβ -degradation enzyme
secretion and expression of
pro-inflammatory cytokines

[131]

UCM-MSCs Mice Activate Tregs and increase neuronal
survival

[134]

BM-MSCs Mice Clear amyloid plaque, increase
neuronal survival and enhanced cell
autophagy pathway

[136]

Autoimmune diseases RA AD-MSCs Mice Elevation of the inflammatory response [137]

AD-MSCs Mice Th1/Th7 antigen-specific cells
expansion, reduction in inflammatory
chemokine and cytokines, increase
secretion of IL-10

[138]

BM-MSCs Mice Reduction in inflammatory chemokine
and cytokines

[139]

Type 1 diabetes BM-MSCs Mice Formation of glucose competent
pancreatic cells

[108]

UM-MSCs Mice Differentiated into β -cells, produce
human C-peptide in response to
glucose challenge

[143]

Cardiovascular diseases Myocardial infarction BM-MSCs Mice Partially recompensed infarcted
myocardium

[148,149]

Acute myocardial infarction UCB-MSCs Mice proliferating early and then differentiate
into endothelial lineage

[153,154]

and these features protects MSCs from natural killer (NK) cells
lysis [113]. The MSCs therapy might alleviate disease response
by increasing the conversion from Th2 (T helper cells) response to
Th1 cellular immune response through modulation of interleukin
(IL)-4 and interferon (IFN)-γ levels in effector T-cells [114].
MSCs have the ability to inhibit the NK cells and cytotoxic T-
cells by means of different pathways. The secretion of human
leucocytes antigen G5 was also found helpful in the suppres-
sion of T lymphocytes and NK cells [115]. By the secretion of
suppressors of T-cells development [116], inhibitory factors i.e.
leukaemia inhibitory factor (LIF) [117] and IFN-γ [118] en-
hance immunomodulatory properties of MSCs. Moreover, it is
observed that human BM-MSCs were not recognized by NK
cells, as they expressed HLA-DR molecules [119]. When al-
logenic hMSCs were transplanted into patients, there was no
production of anti-allogeneic antibody nor T-cell priming [120],
but the cytotoxic immune factors were found to be involved in
the lysis of MSCs [114,121]. In this situation, the IFN-γ act
as antagonist of NK cells, i.e. IL-2-treated NKs are recognized
to destroy MSCs whereas IFN-γ helps the MSCs to keep it safe
from NKs [122]. In the same report, Jewett et al. [122] mentioned
that along with the protection of MSCs from cytotoxic factors,
IFN-γ also enhances the differentiation of these cells by nuclear
factor kappa β (NFκB)-dependent and -independent pathway.
Toll-like receptors (TLRs) are the key components of innate im-

mune system, which is critically involved in the initiation of
adaptive immune system responses. MSCs have the expression
of TLRs that elevate their cytokines secretions as well as prolif-
eration [123]. MHC class I chain-like gene A (MICA) together
with TLR3 ligand and other immunoregulatory proteins kept the
MSCs safe from NKs invasion [123]. Together with other prop-
erties, these immunomodulatory features makes MSCs one of
the feasible stem-cells source for performing cell transplantation
experiments.

Human mesenchymal stem cells and chronic
diseases
Considering the homing ability, multilineage potential, secretion
of anti-inflammatory molecules and immunoregulatory effects,
MSCs are considered as promising cell source for treatment of
autoimmune, inflammatory and degenerative diseases. Efforts
have been made to discuss the role of MSCs in treating chronic
diseases in animal disease model (Table 3).

Neurodegenerative diseases
Amylotrophic lateral sclerosis. We previously discussed that
MSCs have the ability to differentiate into neurons [87–99]. The
first MSCs transplantation for neurodegenerative disorder was
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conducted in acid sphingomyelinase mouse model. After the in-
jection of MSCs, there was a decrease in disease abnormalities
and improvement in the overall survivability of the mouse [124].
Based on this experiment, a new study was designed to ascertain
the potency of MSC transplantation into amylotrophic lateral
sclerosis (ALS), a neurodegenerative disease that particularly
degenerate the motor neurons and disturb muscle functionality
[124]. The MSCs were isolated from the bone marrow of patients
and then injected into the spinal cord of the same patients, fol-
lowed by tracking of MSCs using MRI at 3 and 6 months. As a
result, neither structural changes in the spinal cord nor abnormal
cells proliferation was observed. However, the patients were suf-
fering from mild adverse effects, i.e. intercostal pain irradiation
and leg sensory dysesthesia which were reversed in few weeks
duration. In another study, the AD-MSCs were genetically modi-
fied to express GDNF and then transplanted in rat model of ALS
which improved the pathological phenotype and increased the
number of neuromuscular connections [125].

Parkinson’s disease. Parkinson’s disease (PD) is a neurode-
generative disorder, characterized by substantial loss of dopam-
inergic neurons. The MSCs enhanced tyrosine hydroxylase level
after transplantation in PD mice model [126]. MSCs by secretion
of trophic factors like vascular endothelial growth factor (VEGF),
FGF-2, EGF, neurotrophin-3 (NT3), HGF and BDNF contrib-
ute to neuroprotection without differentiating into neurocytes
[127,128]. Now new strategies are being adopted like genetic
modifications of hMSCs, which induce the secretions of specific
factors or increase the dopamine (DA) cell differentiation. BM-
MSCs were transduced with lentivirus carrying LMX1a gene
and the resulted cells were similar to mesodiencephalic neur-
ons with high DA cell differentiation [89]. Research group from
the university hospital of Tubingen in Germany first time de-
livered MSCs through nose to treat neurodegenerative patients.
The experiments were performed on Parkinson diseased rat with
nasal administration of BM-MSCs [129]. After 4.5 months of
administration, MSCs were found in different brain regions like
hippocampus, cerebral, brain stem, olfactory lobe and cortex,
suggesting that MSCs could survive and proliferate in vivo suc-
cessfully [129]. Additionally, it was observed that this type of
administration increased the level of tyrosine hydroxylase and
decreased the toxin 6-hydroxydopamine in the lesions of ipsilat-
eral striatum and substantia nigra. This novel delivery method of
MSCs administration could change the face of MSCs transplant-
ation in future.

Alzheimer disease. Alzheimer disease (AD) is one of the most
common neurodegenerative disease. Its common symptoms are
dementia, memory loss and intellectual disabilities. Till now no
treatment has been established to stop or slow down the pro-
gression of AD [130]. Recently, researchers are in the search to
reduce the neuropathological deficits by using stem cell therapy
in AD animal model. It was demonstrated that human AD-MSCs
modulate the inflammatory environment, particularly by activ-

ating the alternate microglia which increases the expression of
Aβ-degradation enzymes and decreases the expression of pro-
inflammatory cytokines [131]. Furthermore, it was observed that
MSCs modulate the inflammatory environment of AD and in-
adequacy of regulatory T-cells (Tregs) [132] and later on it was
reported that they could modulate microglia activation [133]. It
was previously demonstrated that human UCB-MSCs activate
Tregs which in turn regulated microglia activation and increased
the neuronal survival in AD mice model [134]. Most recently, it
was evidenced that MSCs enhanced the cell autophagy pathway,
causing to clear the amyloid plaque and increased the neuronal
survivability both in vitro and in vivo [135].

Autoimmune diseases
MSCs are also used to assuage immune disorders because MSCs
have the capacity of regulating immune responses [1]. After re-
vealing the facts that human BM-MSCs could protect the haema-
topoietic precursor from inflammatory damage [136], other hM-
SCs can be used for the treatment of autoimmune diseases.

Rheumatoid arthritis. Rheumatoid arthritis (RA) is a joint
inflammatory disease which is caused due to loss of immuno-
logical self-tolerance. In preclinical studies on animal models,
MSCs were found helpful in the disease recovery and decreas-
ing the disease progression. The injections of human AD-MSCs
into DBA/1 mice model resulted in the elevation of inflammat-
ory response in the animal [137]. They further demonstrated that
following the injections of AD-MSCs, the Th1/Th17 antigen-
specific cells expansion took place due to which the levels of
inflammatory chemokines and cytokines reduced, whereas this
treatment increased the secretion of IL-10 [138]. Along with its
anti-inflammatory function, IL-10 is an important factor in the
activation of Tregs that controls self-reactive T-cells and mo-
tivates peripheral tolerance in vivo [138]. Similar to this, human
BM-MSCs demonstrated the same results in the collagen-induced
arthritis model in DBA/1 mice [139]. These studies suggest that
MSCs can improve the RA pathogenesis in DBA/1 mice model
by activating Treg cells and suppressing the production of inflam-
matory cytokines. However, some contradictions were reported in
adjuvant-induced and spontaneous arthritis model, showing that
MSCs were only effective if administered at the onset of disease,
which suggests that on exposing to inflammatory microenviron-
ment MSCs lost their immunoregulatory properties [140].

Type 1 diabetes. Type 1 diabetes is an autoimmune disease
caused by the destruction of β-cells due the production of auto
antibody directed against these cells. As a result, the quantity
of insulin production reduces to a level which is not sufficient to
control the blood insulin. It has been demonstrated that MSCs can
differentiate into insulin producing cells and have the capacity to
regulate the immunomodulatory effects [118]. For the first time,
nestin positive cells were isolated from rat pancreatic islets and
differentiated into pancreatic endocrine cells [141]. Nestin posit-
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ive cells were isolated from human pancreas and transplanted to
diabetic nonobese diabetic/severe combined immunodeficiency
(NOD-SCID) mice, which helped in the improvement of hyper-
glycaemic condition [142]. However, these studies were found
controversial and it was suggested that besides pancreatic tissues,
other tissues can be used as an alternative for MSCs isolation to
treat type 1 diabetes. Human BM-MSCs were found effective in
differentiating into glucose competent pancreatic endocrine cells
in vitro as well as in vivo [108]. Studies on UCB-MSCs presented
a fascinating option for the use of these cells for insulin producing
cells. It was demonstrated that UCB-MSCs behave like human
ESCs, following similar steps to form the differentiated β-cells
[143]. The most recent findings of Unsal et al. [144] showed that
MSCs when transplanted together with islets cells into strepto-
zotocin treated diabetic rat model enhance the survival rate of
engrafted islets and are found beneficial for treating non-insulin-
dependent patients in type 1 diabetes.

Cardiovascular diseases
For myocardial repair, cardiac cells transplantation is a new
strategy which is now applied in animal models. MSCs are
considered as good source for cardiomyocytes differentiation.
However, in vivo occurrence of cardiomyocytes differentiation is
very rare and in vitro differentiation is found effective only from
young cell sources [145,146]. MSCs trans-differentiated into car-
diomyocytes with cocktail of growth factors [84] were used to
treat myocardial infarction and heart failure secondary to left
ventricular injury [147]. The systematic injection of BM-MSCs
into diseased rodent models partially recompensed the infarcted
myocardium [148,149]. Furthermore Katrisis et al. [150] trans-
planted autologous MSCs along with endothelial progenitor cells
and evidenced the improvement in myocardial contractibility, but
they did not decrypt the mechanism which brought out these
changes. Although MSCs are effective in myocardial infarction
and related problems, but still cell retentivity in the heart is rap-
idly decreased, after 4 h of cells injection only 10 % and after
24 h it was found approximately 1 % cell retention [151,152].
Following this study, Roura et al. [153] reported that UCB-MSCs
retained for several weeks in acute myocardial infarction mice,
proliferated early and then differentiated into endothelial lin-
eage. Most recently, transplantation of UCB-MSCs into myocar-
dial infarction animal model along with fibronectin-immobilized
polycaprolactone nanofibres were found very effective [154]. All
these studies collectively indicate the role of hMSCs in cellular
therapy of cardiac infarction and currently there are approxim-
ately 70 registered trials investigating the effect of MSCs therapy
for cardiac diseases (clinicaltrials.gov).

Homing of MSCs
Homing is the term used when cells are delivered to the site of
injury, which is still challenging for cell-based therapies. Most
of the time local delivery and homing of cells are found benefi-
cial due to interaction with the host tissues, accompanied by the
secretion of trophic factors [114]. There are a number of factors,

like cells age, culturing conditions, cell passage number and the
delivery method, which influence the homing ability of MSCs to
the injured site.

Higher passage number decreases the engraftment efficiency
of MSCs and it has been shown that freshly isolated MSCs
had greater homing efficiency than the cultured cells. Besides
this, the source from which MSCs are being isolated also influ-
ences the homing capacity of MSCs. While culturing MSCs, it
was shown that oxygen condition, availability of cytokines and
growth factors supplements in the culture media triggers import-
ant factors which are helpful in the homing of MSCs. Matrix
metallo-proteases (MMPs), the important proteases which are
involve in the cell migration, also plays important role in the
MSCs migration [155]. The higher cell numbers and hypoxic
condition of the culturing environment influence the expression
of these MMPs [156]. The inflammatory cytokines, i.e. IL-1β,
TNF-α and TGF-1 β, enhance the migration of MSCs by up-
regulating the level of MMPs [155]. The next important factor
is delivery method via which the MSCs are administered to the
desired tissue. Intravenous infusion was the most commonly ad-
ministered route [157], because if MSCs were administered sys-
temically it will trap in the capillaries sheet of various tissues,
especially in lungs [158]. That is the reason why most of the
time intra-arterial injections of MSCs has been advised, but
the most convenient and feasible way of MSCs transplantation
is local injection to the site of injury or near the site of injury
which provides more number of cells and increases its functional
capacity.

The exact mechanism via which MSCs migrate and home to
the injured site is still unknown, although it is believed that cer-
tain chemokine and its receptors are involved in the migration
and homing of MSCs to the tissue of interest. MSCs express
many receptors and adhesion molecules which assist in its mi-
gration process. The chemokine receptor type 4 (CXCR4) and
its binding protein stromal-derived factor 1-α (SDF-1α) play a
vital role in this process [159]. In order to know the homing ca-
pacity and to monitor the therapeutic efficiency of MSCs, in vivo
tracking by non-invasive method are pre-requisite. Some advance
techniques, i.e. single photon emission CT (SPECT), biolumines-
cence imaging (BLI), positron emission tomography (PET) were
being applied for tracking the MSCs.

As we discussed earlier that MSCs have higher trans-
differentiation potential and exhibits immunomodulatory fea-
tures, but their off target homing, especially lodging in the lungs,
is a major obstacle. There is need for in-depth study of MSCs
homing mechanism and finding appropriate tracking without any
negative effect on the cells and host.

Cryopreservation and banking
From all the previous studies, it is obvious that the use of hM-
SCs for clinical applications will increase in future. For clin-
ical applications, a large number of MSCs in an ‘off the shelf’
format are required. For this purpose, a proper set up of in vitro
MSCs expansion and subsequent cryopreservation and banking
are necessary to be established. This will provide unique op-
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portunities to bring forward the potential uses and widespread
implementation of these cells in research and clinical applica-
tions. Keeping in mind its use in future clinical and therapeutic
applications, there is a need to ensure the safety and efficacy of
these cells while cryopreserving and banking. For the selection of
optimal cryopreservation media, uniform change in temperature
during freezing and thawing, employed freezing device and long-
term storage in liquid nitrogen are the indispensable factors to
consider.

First considerable factor is the optimal cryopreservation media
in which cells can maintain their stem cells abilities for long time.
In the cryopreservation media, the cells require the animal base re-
agent, like FBS, as a source of their nutrients, but previous studies
have suggested that animal proteins are difficult to remove from
the hMSCs and that these resident protein may enhance adverse
reactions in the patients who receive these cells for treatment
[35]. Therefore, a serum-free media is substantial for the cryop-
reservation of MSCs and researchers have successfully used the
serum-free media for cryopreservation of MSCs [160,161]. Most
recently, human albumin and neuropeptide were used instead of
FBS and MSCs maintained their cell survival and proliferation
potential in the culture conditions. Additionally, cryoprotective
agents (CPAs) are required for the cryopreservation media to pre-
vent any freezing damage to cells. A large number of CPAs are
available [162] among which DMSO is the most common CPAs
used in cryopreservation of MSCs. However, DMSO is toxic to
both humans and animals which make it complicated in the use
of MSCs freezing for clinical applications and it has been showed
that DMSO has bad effects in both animals and humans [163].
On the infusion of MSCs frozen in DMSO, patients develop
mild complications like nausea, vomiting, headache, hyperten-
sion, diarrhoea and hypotension [164] and also severe effects
like cardiovascular and respiratory issues were reported [165].
Due to these toxic effects, it is necessary to remove (washing
with isotonic solutions) or replace DMSO with an alternate CPA.
There are several methods along with the introduction of auto-
mated cells washing for the removal of DMSO from the frozen
thawed cells [166]. Most recently for tissue cryopreservation, a
new method was introduced using the mixture of 0.05 M glucose,
0.05 M sucrose and 1.5 M ethylene glycol in phosphate buffer
saline [167], shown successful isolation and characterization of
MSCs after 3 months of cryopreservation of the tissue. Hence,
this method is without any DMSO and animal serum, but it is
not yet applied for MSCs cryopreservation. From these findings,
it is clear that for clinical grade cells, there is a need of a cryop-
reservation protocol either with low concentration of DMSO or
to replace DMSO with non-toxic alternative.

For cryopreservation of MSCs, the second important factor is
the freezing temperature rate. Mostly slow freezing at the rate of
1 ◦C/min is the optimum rate for MSCs preservation [168]. For
this purpose, current controlled rate freezers (CRFs) are suitable
for controlling temperature, maintaining the rate of temperature
during cryopreservation. These CRFs can be programmed to find
out the exact temperature which the sample is experiencing dur-
ing freezing [169]. Despite of these benefits, these CRFs lack the
uniformity of temperature to all vials during large-scale banking

of MSCs [170], so for large-scale banking, the development of ad-
vance CRFs are mandatory. Recently more advanced CRF, which
provides unidirectional flow of cryogen to each sample, were cre-
ated by Praxair Inc. On large-scale MSCs banking, along with the
safe and efficient cryopreservation, the regulatory guidelines are
also important. Like in the U.S.A., Food and Drug Administration
(FDA) is responsible whereas in Europe, European Medicines
Agency is responsible in Europe for supervising MSCs based
cell therapy products.

MSCs in clinical trials
MSCs have a promising future in the world of clinical medicine
and the number of clinical trials has been rising since the last dec-
ade. Along with preclinical studies, MSCs have been found to be
persuasive in the treatment of many diseases [1]. A large number
of clinical trials have been conducted and this trend is gradually
increasing (Figure 1). Currently, there are 463 registered clin-
ical trials in different clinical phases (phase I, II etc.), evaluating
the potential of MSC-based cell therapy throughout the world
(ClinicalTrials.gov). Most of these trials are phase I/II studies
and combination of phase II/III studies, whereas very small num-
bers of these trials are in phase IV or phase III/IV. Among 463
registered trials, 264 trials are in open status which is open for
recruitment whereas 199 trials are closed; out of which 106 stud-
ies are completed whereas the rest are in active phases. Clinical
trials conducted with MSCs showed very less detrimental ef-
fects; however, few of them showed mild adverse effects. Due to
immunomodulatory properties, MSCs have been used in many
human autoimmune disease clinical trials. However, the exact
mechanism by which MSCs regulate the immune response is un-
clear [171]. To date, 45 autoimmune-disease clinical trials have
been registered, out of which seven are completed, 22 are open
for recruitment whereas the rest are in active phases (Clinical-
Trials.gov). Similarly 70 trials are registered for cardiovascular
diseases, 37 for osteoarthritis, 32 for liver disorders, 29 for graft
versus host disease (GvHD), 21 for respiratory disorders, 15 for
spinal cord injury, 15 for kidney failure, 13 for skin diseases,
seven for muscular dystrophy, five for aplastic anaemia, four for
Osteogenesis imperfecta, four for AD, two for PD, two for ulcer-
ative colitis and rest are for other diseases (Figure 2). Although
the progress of clinical studies so far registered is slow (only
seven studies with final results), but the efficient use of MSCs in
large clinical trials with upcoming promising results have proven
MSCs as boon for regenerative medicine.

FUTURE PROSPECTS

Recent breakthrough discoveries in engineering MSCs have made
it an ideal source for future cell therapy in regenerative medicine.
MSCs adaptability to the exposed environment has made them
an impressive source for disease treatment, though the full under-
standing of MSCs mechanism is still in their preliminary stages.
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Figure 1 Number of clinical trials registered (per year) for MSCs based therapy (ClinicalTrials.gov)

Figure 2 Number of common diseases registered for MSCs based cell therapy (ClinicalTrials.gov)
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After performing a large number of preclinical trials, the human
clinical trials of MSCs are now on its way to success and many
trials have been successfully accomplished (clinicaltrials.gov).
During the last decade, many experimental and clinical assays
had been developed; however, a number of questions related to
MSCs biology are unsolved. These are related to MSCs sur-
vival and homing capacity after transplantation, the relationship
between the host immunity and MSCs, the route of administration
(local or systemic) and whether the properties like proliferation,
differentiation and trans-differentiation are maintained after
in vivo transplantation. Several reports have documented the suc-
cessful transplantation, differentiation and homing of hMSCs but
their effect in the concerned disease is due to secretion of cy-
tokines rather than direct effect of MSCs. Furthermore the mech-
anism underlying migration of MSCs remains to be clarified,
although evidence suggests that both chemokines and their re-
ceptors and adhesion molecules are involved in this process [37].
The future MSCs research should focus on finding more suitable
markers to isolate the source-specific MSCs, basic understanding
of growth regulators in differentiation and trans-differentiation
and site-specific homing that can revolutionize the cell regener-
ation therapy. Moreover, to reduce the risk of oncogenic trans-
formation special attention should be paid to the genetic safety
of cell preparation. Nevertheless, an active research should fo-
cus on bio-banking in a large scale to use them in the future by
developing a novel CPA/protocol without hampering their basic
characteristics.

CONCLUSION

hMSCs are not only easy to isolate but they also retain their ability
to expand for long period of time without losing its characterist-
ics. However, apart from mesodermal lineages, they have the ca-
pacity to trans-differentiate into ectodermal and endodermal lin-
eages. Moreover, hMSCs have the immunomodulatory properties
as they secrete certain cytokines and immune relevant receptors
to modify the host immune environment. All these properties of
MSCs make them distinct from other stem cells and can be used
in future cell replacement therapy. Many preclinical and clinical
studies were performed using hMSCs in treatment of chronic
diseases like neurodegenerative diseases, autoimmune and car-
diovascular diseases, but still there are questions that have to be
answered before using hMSCs on large clinical scale. Firstly,
the safety issues of MSCs should be solved, because after MSCs
administration, mild adverse effects were observed and the most
severe is that unfortunately long-term cultured MSCs promote
tumour growth and metastasis. Secondly, quality control: before
directly applying MSCs for in vivo transplantation, additional
tests are needed to perform, like cell viability, endotoxin assays
and oncogenic tests. Depending upon the severity of disease, an
optimal dose and specific administration time is needed to be de-
cided. The third and most important is clinical grade production
of MSCs, because for clinical use of MSCs a large number of

cells are required, for which in vitro expansion is vital, but MSCs
at higher passages could lead to cell transformation. To conclude,
though adult-derived hMSCs are a favourite choice, but before
hMSCs can be used on large-scale clinical applications for cell
therapy, there is a need for completely understanding the under-
lying mechanisms that regulate and modulate these MSCs.
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